Characterization of Microbial Diversity using Metabarcoding

MIO, Mars 2024

Different names ... same meaning!

16S amplicon sequencing

16s rDNA Gene Tag Sequencing

Metabarcoding

barcoding

16S metagenomics

eDNA metabarcoding

A new name for an old concept

"DNA Barcoding" appears recently in literature (Floyd et al. 2002) but was firstly reported in 1993 (Arnot et al. 1993)

□ *sensu stricto*: Use of a standardized DNA region as a **tag** for rapid and accurate **species** identification

□ *sensu lato*: Identification of **any taxonomical level** using any DNA fragment

Mitochondrial Cytochrome Oxydase 1 → Animal Chloroplast part → Plant 16S rDNA → Bacteria/Archaea

Metabarcoding...

Use to designate **high-throughput multispecies identification** using DNA extracted from an **environmental sample** or from bulk samples of entire organisms (*Taberlet et al. 2009*)

→ Take advantage of Next Generation Sequencing (NGS)

Environmental DNA (eDNA)

DNA extracted from air, water, soil without isolating any microorganism

Goal of Metabarcoding: Who is there?

Characterization of the **taxonomic diversity** inhabiting various ecosystems using direct eDNA

- → Multispecies sample
- → Target 16S rDNA gene marker for Bacteria/Archaea identification
- \rightarrow Use high-throughput sequencing (= massive data \rightarrow complex ecosystem)

Pannenkens et al. 2019

Biological pump of CO2

Tamburini et al.

Submarine hydrothermal sources

Erauso et al.

More than "Who is there?"....

Relationships Taxonomic Composition – Environmental Factors (EF)

EF: ph, temperature, salinity, trace element, hydrostatic pressure, nutrient availability etc

- How environmental factors impact community composition/structure?
 →Abundance shifts? Absence/Presence? Gradient? Diversity level?
- How similar/different are your samples
 → What are the major actors driving these similarities?

Pollution Response

• **Dynamics of communities distribution at time and/or spatial scale** i.e. Seasons, geographic location, ocean depth, perturbations etc

What kind of results you can expect?

Taxonomic profile

Within-sample alpha diversity

Time or space Gradients

Multivariate analysis

species richness

Who is there? Easy?

You can not use the full length of 16S gene

- \rightarrow Have to work with a short 16S region
- \rightarrow Loss of resolutive power for taxonomic identification

PCR & Sequencing introduce errors in sequences/reads
 How to deal with that??
 → Increase taxonomic misidentification

Metabarcoding Global Overview

Choice of gene Marker

- Choice of the Region to amplify
- Choice of Sequencing Technology (NGS)

16S marker for bacterial/Archaeal identification

Amplify DNA

markers

Type LSU		SSU	
prokaryotic 5S - 120 bp 23S - 2906 bp		16S - 1542 bp	

- **1.** Use of **5S** : low phylogenetic power
- 2. Use of 23S: too long
- 3. Use of 16S : ideal length 1500 pb (adapted for Sanger sequencing)

Next Generation Sequencing (NGS): Illumina Miseq

Only remember \rightarrow Sequencing by reversible dye terminators

Illumina Miseq Sequencing Performance

Technology limit! oops!! Loss of resolutive power

	MiSeq Reagent Kit v2				MiSeq Reagent Kit v3	
Read Length	1 × 36 bp	2 × 25 bp	2 × 150 bp	2 × 250 bp	2 × 75 bp	2 × 300 bp
Total Time*	~4 hrs	~5.5 hrs	~24 hrs	~39 hrs	~21 hrs	~56 hrs
Output	540–610 Mb	750–850 Mb	4.5–5.1 Gb	7.5–8.5 Gb	3.3–3.8 Gb	13.2–15 Gb

Phylogenetic resolutive power & variable regions of 16S

Variable 16S region: Fail to classify at the species taxonomic level

Greengene database RDP classifier (Threshold 80)

16S paired-end sequencing

Run Time	4–55 hours
Maximum Output	15 Gb
Maximum Reads Per Run	25 million [†]
Maximum Read Length	2 × 300 bp

- Miseq Illumina: Max read length is 300 bp
- Paired-end strategy increase the size of your target 16S region (Amplicon) Paired end : 2 X 300bp (Forward, Reverse)

Overlapping paired-end reads : Assembly is possible = increase amplicon size

Non Overlapping paired-end reads: You can not assemble the sequencing reads!!!

16S Miseq paired-end

Index concept = Sample multiplexing on the same lane

Analyses : How to discriminate sequences according to sample? Which sequence belongs to which sample????? → Index/barcode strategy

Barcoded PCR product for NGS

Add a different Index/barcode for each sample

Barcode	adaptor	barcode	Primer sequence	Amplified sequence
	GCCATCAG	G GATCT (Sample 1	NACGCGAAGAACCTTAN	NC NNNNNNNNN
	GCCATCAG	ATCAG CI Sample 2	NACGCGAAGAACCTTAN	C NNNNNNNNN
	GCCATCAG	CACTG CI Sample 3	NACGCGAAGAACCTTAN	C NNNNNNNNN
	GCCATCAG	CTGTG CI Sample 4	NACGCGAAGAACCTTAN	C NNNNNNNNN

