Bioinformatics processing

From sample to sequences

<u>Quality score</u> = **Q score** = Score Phred

→ The base calling step is associated to a **measure of accuracy** = A **quality score**

→ This Q score corresponds to the probability that a given nucleotide base is <u>called</u> incorrectly by the sequencer

It allows you to:

- Identify **bases** with a **high probability of error**
- Identify regions of reads or reads of poor quality in order to eliminate them ...

<u>Quality score</u> = **Q score** = Score Phred

→ The base calling step is associated to a **measure of accuracy** = A **quality score**

→ This Q score corresponds to the probability that a given nucleotide base is <u>called</u> incorrectly by the sequencer

It allows you to:

- Identify bases with a high probability of error
- Identify regions of reads or reads of poor quality in order to eliminate them ...

Logarithmically related to the base call error probabilities (P)

Phred Quality Score	Probability of Incorrect Base Call	Base Call Accuracy		
10	1 in 10	90%		
20	1 in 100	99%		
30	1 in 1,000	99.9%		
40	1 in 10,000	99.99%		
50	1 in 100,000	99.999%	6	
			C	

<u>THEN ?</u>

Delivery of sequences in a file in **fastq format**:

Text file containing the **nucleotide sequences** and the **quality scores** associated with each base (scores coded with ASCII characters)

<u>THEN ?</u>

Delivery of sequences in a file in **fastq format**:

Text file containing the **nucleotide sequences** and the **quality scores** associated with each base (scores coded with ASCII characters)

Molecular biologyVSBioinformaticNucleotide sequences« reads »

Metabarcoding : an infaillible method ?

©AllGenetics

Séparer le bon grain de l'ivraie ...

Ecological Applications, 30(2), 2020, e02036

© 2019 The Authors. *Ecological Applications* published by Wiley Periodicals, Inc. on behalf of Ecological Society of America This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

From metabarcoding to metaphylogeography: separating the wheat from the chaff

Xavier Turon,^{1,4} Adrià Antich,¹ Creu Palacín,² Kim Præbel,³ and Owen Simon Wangensteen³

¹Department of Marine Ecology, Centre for Advanced Studies of Blanes (CEAB, CSIC), Blanes, Catalonia, Spain ²Department of Evolutionary Biology, Ecology and Environmental Sciences, and Institute of Biodiversity Research (IRBio), University of Barcelona, Barcelona, Catalonia, Spain ³Norwegian College of Fishery Science, UiT the Arctic University of Norway, Tromsø, Norway

Séparer le bon grain de l'ivraie ...

Error Sources in Metabarcodin g

PCR errors

→ mostly substitution error caused by Polymerase

Chimera

\rightarrow **Polymerase template-switching** on closely-related templates \rightarrow Merge (a least) 2 sequences that belong to 2 different species

Parent1 Aborted extension
Parent2

Mis-priming

Extension

Chimera

= Are not real biological entities but PCR artifacts !!

Primer bias

→ Different primer sets provide difference in abundance at taxonomic level
 → Variability of primer sensitivity according phyla, genera etc

Depth bias

→ No equally amplification of the different templates (preferential targets)
 → The initial more abundant template are more amplified ...

Commonly modeled biases in base-callers for the Illumina platform

Ledergerber et al. 2010

16S Sequencing errors

Make it difficult to distinguish biologically real nucleotide differences from sequencing artefacts

Consequence? Impact the taxonomy assignment resolution (i.e species level, misidentification)

Solution? The Denoising : correct sequencing errors!

Denoiser Tools

- Deblur Amir et al. 2017
- Unoise3 Edgar et al. 2016
- Dada2 Callahan et al. 2016. Nat. Meth.

New bioinformatic sequence "denoising" approaches have been developed to correct sequencing errors thus improving taxonomic resolution

Processing marker-gene data with...

This workflow assumes that your sequencing data meets certain criteria:

- Samples have been demultiplexed, i.e. split into individual per-sample fastq files.
- Non-biological nucleotides have been removed, e.g. primers, adapters, linkers, etc.
- If paired-end sequencing data, the forward and reverse fastq files contain reads in matched order.

DADA2 Divisive Amplicon Denoising Algorithm

• The goal is **NOT** to find OTU clusters

BUT

Determine if a sequence read came from
 True Variation or Sequencing Error

→ Introduced a model-based approach for correcting amplicon errors

DADA2

Generates a **parametric error model** that is trained on the entire sequencing run and then **applies that model to correct and collapse the sequence errors** into what the authors call **amplicon sequence variants** (ASVs)

ASV vs. OTU

Sequence 1 : ATCGT------Sequence 2: GCATC------Sequence 3: GCAT**G**------

Seq.1 = ASV1 (15 read) Seq.2 = ASV2 (40 reads) Seq.3 = ASV3 (25 reads)

ASV1 = Listeria monocytogenes ASV2 = Streptoccocus pneumoniae ASV3 = Streptoccocus pneumoniae Same strain 2 different strains

But different copies

ASV = Variant d'amplicon (i.e. : Une séquence UNIQUE)

ASV vs. OTU

Sequence 1 : ATCGT------Sequence 2: GCATC------Sequence 3: GCAT<mark>G</mark>------

Seq.1 = ASV1 (15 read) Seq.2 = ASV2 (40 reads) Seq.3 = ASV3 (25 reads)

ASV1 = Listeria monocytogenes ASV2 = Streptoccocus pneumoniae ASV3 = Streptoccocus pneumoniae

Same strain2 different strainsBut different copies

ASV = Variant d'amplicon (i.e. : Une séquence **UNIQUE**)

Choice of an *identity threshold* (=similarity) between sequences (>97% for rank of species)

Streptococcus pneumoniae

OTU = Unité taxonomique opérationnelle = regroupement de séquence sur la base d'un seuil de similitude fixé

The model relies on

Read abundances: True reads are likely to be more abundant

Distances : Less abundant reads with only a few base-differences away from a more abundant sequence are likely error-derived (Hamming distance)

Q-scores : Calculate a substitution model, estimating a probability for each possible base substitution (e.g. A replacing G, G replacing T, etc).

→ DADA2 uses a probability threshold to decide whether to assign counts from a less abundant, "error-derived" read to a more abundant, "true" sequence

Sequence Read 1: acttcatgataccacatgatacg

Sequence Read 2: acttcatgctaccacatgatacg

Sequence Read 1: acttcatgataccacatgatacg

Sequence Read 2: acttcatgctaccacatgatacg

	Abundance	Quality Score	Base Transitions			
Sequence 1	50,000	42	C -> A			
Sequence 2	400	14	A -> C			

Sequence Read 1: acttcatgataccacatgatacg

Sequence Read 2: acttcatgctaccacatgatacg

	Abundance	Quality Score	Base Transitions			
Sequence 1	50,000	42	C -> A			
Sequence 2	40,000	35	A -> C			

Sequence Read 1: acttcatgataccacatgatacg

Sequence Read 2: acttcatgctaccacatgatacg

.

		Abundance	Quality Score	Base Transitions			
Sequ	ience 1	50,000	42	C -> A			
Sequ	ience 2	40,000	35	A -> C			

Base Correction is function of read abundance, Quality score and transition probability

Error model Estimation

- Error for each possible transition ($A \rightarrow C, A \rightarrow G, ...$)
- Points are the observed error rates for each consensus quality score
- The black line shows the estimated error rates after convergence of the machine-learning algorithm
- **Important** → error rates drop with increase quality as expected

How to be confident with the model error estimation??

The estimated error rates (black line) are NOT a good fit to the observed rates (points)!! → Bad data!

ASV and heterogeneity of 16S within same genome!

- Heterogeneity: Multicopy of 16S whitin species/strain genome \rightarrow ranging from 1 to 15 copies depending on the species (Klappenbach *et al.* 2000)
- Variability of the 16S from different strains of species \rightarrow Some genomes have a ribosomal sequence variation of up to 11% !

Multicopy of 16S introduces a bias in estimating the relative abundance of different organisms in the sample

Quality Filtering: Global vs. local

Remove bad quality sequencing reads:

- Avoid ambiguous bases « N »
- Define Min/max length of reads
- Define cut-off for base Quality (Qscore max=40; min=0)

Filtering bad reads....

Filtering bad reads....

... Remove Singleton

Quality scores across all bases (Sanger / Illumina 1.9 encoding)

Merge : Assembly of Fwd & Reverse

Overlapping paired-end reads : Assembly is possible = increase amplicon size

Assign Taxonomy for Amplicon Sequence Variant

- Formatted training fasta files for RDP, Greengenes and Silva reference databases are maintained
- Silva is probably the more complete database

Databases for Dada2

Maintained:

- Silva version 132, Silva version 128, Silva version 123 (Silva dual-license)
- RDP trainset 16, RDP trainset 14
- GreenGenes version 13.8
- UNITE (use the General Fasta releases)

Contributed:

- RefSeq + RDP (NCBI RefSeq 16S rRNA database supplemented by RDP)
 - Reference files formatted for assignTaxonomy
 - Reference files formatted for assignSpecies
- GTDB: Genome Taxonomy Database (More info: http://gtdb.ecogenomic.org/)
 - Reference files formatted for assignTaxonomy
 - Reference files formatted for assignSpecies
- HitDB version 1 (Human InTestinal 16S rRNA)
- RDP fungi LSU trainset 11
- Silva Eukaryotic 18S, v132 & v128
- PR2 version 4.7.2+. SEE NOTE BELOW.

What the literature says

				Output	Output sequences			Reference			
				reads (%)	Total	Reference	Exact	One Of	f Other	strains	
	Balanced	Forward	DADA2	99.2	93	59	33	1	0	57	
Developmente ele s			UPARSE	99.1	81	48	29	2	2	53	
Denoising tools :			MED	95.5	86	59	5	22	0	57	
Moro officiantal			Mothur	96.3	249	44	25	15	165	49	
More entriente:			QIIME	99.2	378	51	34	3	290	54	Faise positive species :
		Merged	DADA2	96.2	87	57	29	1	0	55	overestimation I
			UPARSE	94.2	76	45	27	2	2	50	overestimation :
			MED	91.1	64	56	6	2	0	54	
			Mothur	94.1	108	42	27	11	28	47	
			QIIME	94.1	170	45	28	4	93	50	
	HMP	Forward	DADA2	95.1	151	23	112	8	8	21	
			UPARSE	96.7	161	20	123	10	8	21	
			MED	80.9	83	23	2	58	0	21	
			Mothur	95.4	849	20	177	47	605	21	
			QIIME	97.4	1,375	20	177	60	1,118	21	
		Merged	DADA2	92.3	67	23	40	2	2	21	
			UPARSE	67.7	94	20	59	2	13	21	
			MED	64.8	32	23	3	6	0	21	
			Mothur	62.1	121	20	82	9	10	21	
			QIIME	67.6	290	20	71	8	191	21	
	Extreme	Forward	DADA2	99.5	68	26	35	3	4	23	
			UPARSE	99.5	74	21	40	0	13	21	
			MED	86.4	95	16	0	79	0	13	
			Mothur	_	-	_	-	_	-	-	
			QIIME	99.5	3,237	20	44	73	3,100	20	
		Merged	DADA2	97.6	25	24	1	0	0	21	
			UPARSE	69.9	23	18	4	0	1	18	
			MED	67.6	32	17	0	15	0	14	
			Mothur	94.3	44	23	14	0	7	23	
			QIIME	69.9	36	19	8	1	8	19	
							<u> </u>			0040	

Table 1 | The accuracy of DADA2, UPARSE, MED, mothur, and QIIME on three mock community data sets

Callahan *et al.* 2016

Conclusion: ASV (dada) vs. OTU (Qiime)

 Most of the differences between ASVs & OTU methods are shown with the alpha diversity analysis :

- Difference in species number & diversity

- Spurious OTU (species not expected) with Qiime (overestimation)

• No impact of the methods for the beta diversity analysis

 Dada2 : Good performance in the detection of rare without the cost of non expected (spurious)from sample highly diversified
 For low diversity sample -> less good, increase spurious ASVs

Nearing *et al.* 2018

Now it's your turn !

